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A molecular description of the mesomorphic behaviour of globular supermolecules of radial dendritic

architecture is presented. It is based on coarse grained structural and conformational features, namely,

anisometry of the overall shape, submolecular partitioning of the interactions and non-convexity of the

supermolecular surface. The relevance of these features to conformational phase transitions, orientational

ordering, layering and microsegregation phenomena in ordered fluid phases is studied using density functional

theory of deformable bodies and Monte Carlo simulations of rigid fan molecules. Orientationally ordered and

layered phases are found, both in theory and simulation, even in the absence of significant overall shape

anisometry.

1. Introduction

Common, low molar mass, liquid crystals are made of mole-
cules (mesogens) with highly directional interactions. The
anisometry (inequality of dimensions) of the molecular shape,
in essence the geometrical transcription of the directionality
of steric interactions, is the feature most commonly used to
differentiatemesogens (calamitic, discotic, sanidic, banana,...) in
relation to the possible general types of self organisation they
can produce in fluid phases.1 The underlying physical justifica-
tion is that self organisation is dictated primarily by steric
restrictions on molecular packing. This picture is generally
accepted and is not in contradiction with well known instances
where other, weak, interactions such as hydrogen bonding,
electrostatic etc., could affect critically the ordering.
Low molar mass mesogens typically consist of a relatively

rigid, shape-anisometric, core and one or more flexible end
chains. The type of anisometry of the mesogenic core
essentially determines the structural type of the phases that
can be formed by the molecules. As a rule (notable exceptions
being some interesting cases of core photoisomerisation),2

molecular flexibility, whether associated with the end-chains or
with internal motions of the mesogenic core, has limited effects
on the overall molecular anisometry. Such effects could,
nevertheless influence critically the stability of some meso-
phases relative to others. On the other hand, the molecular
environment produced by the self organisation of the molecules
influences the statistics of their conformations but not to the
point of changing the type of molecular anisometry. Thus, for
example, the statistical distribution of conformations of
common calamitic mesogens in the isotropic phase differs
from their distribution in the nematic phase but the average
molecular shape appears only slightly more elongated in the
nematic phase than in the isotropic.3

The situation is radically different for some classes of
globular supermesogens of dendritic topology.4–12 A usual
molecular architecture for such systems consists of an inner
scaffold, rigid or flexible, and a number of mesogenic units
linked in branching configurations to the core by means of
flexible spacer chains. An example of such a structure8 is shown
in Fig. 1. These supermolecules typically have a very large

number of accessible conformations whose shapes can be very
different. Furthermore, the dominant conformations in a bulk
phase could be quite different from the dominant conforma-
tions of the isolated supermolecule. On the other hand, phase
structure and thermodynamic stability depend sensitively on
the packing properties and intrinsic probabilities of the
supermolecular conformational states. This strong interdepen-
dence of phase organisation and dominant conformational
structure is an important difference between the mesomorphic
behaviour of the dendritic supermolecular mesogens and that
of the low molar mass mesogens.
In this paper we present an attempt to rationalise the

mesomorphic behaviour of the supermolecular systems in
terms of basic structural features. The focus is on identifying
the key topological and statistical ingredients for the descrip-
tion of their self organisation propensities. Naturally, this
excludes cases where special interactions play an exceptionally
important role in the determination of the mesomorphic
behaviour. The obvious motivation for this low resolution
approach is that an atomistic approach is in general com-
putationally prohibitive in view of the huge number of internal
degrees of freedom associated with the flexibility of the
supermesogens. Moreover, the focus of the atomistic approach
would necessarily be on structural and interaction details of
specific supemolecular systems rather than on the possible
unifying aspects of the behaviour of different types of systems.
The directionality of the supermolecular structure, more

precisely of its various conformational states, could be
produced in different ways, depending on the details of the
architecture and the presence of site specific interactions. For
example, directionality could be produced by deformations of
the mass distribution of the supermolecule, leading to highly
anisometric overall shapes,4 or, in the other extreme, by mere
alignment of the mesogenic units in the periphery,11 leading to
highly directional surface interactions among the supermole-
cules without necessarily producing a strong anisometry of
their overall shapes.
Here we concentrate on three basic aspects of directionality

and we show that they could provide a consistent description of
mesomorphism and related conformational phenomena in a
wide class of supermolecular sytems. These aspects are:
(i) anisometry of the overall shape of the supermolecular state,

which determines the packing properties of the system in the
absence of extensive interdigitations among supermolecules;
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(ii) submolecular partitioning into regions with distinctly
different interactions depending on their intra-molecular
organization and on their chemical affinity. This type of
partitioning underlies the mechanism of phase-microsegrega-
tion that is operative in low molar mass systems as well and is
known to favour the formation of lamellar and columnar
structures; (iii) non-convexity of the shape, describing in higher
resolution the super-molecular surface topology. It becomes
important when there is substantial interdigitation of the
interacting supermolecules.
These three aspects are examined separately in this paper in

order to identify their particular roles. In many real super-
molecular systems of interest, however, all three aspects could
be simultaneously present, to different extents, in mutually
supplementing or counteracting roles, to promote or to sup-
press certain types of self organisation. Particular considera-
tion is given to the possibility of orientationally ordered phases
from supermolecular structures that are intrinsically globular
or completely non-directional in a statistical sense.
The deformable convex body approximation, based on the

anisometry of the overall molecular shape through the concept
of the molecular envelope, is introduced in the next section. A
primitive application of this approximation is presented in
Section 3 for a dendritic supermesogen of radial topology
whose conformations are assumed to be grouped in just two
states of the enveloping shape, a spherical and cylindrical one.
The molecular volumes and statistical weights associated with
the enveloping states are estimated. A density functional theory
of the isotropic, nematic and smectic A phases exhibited by the
two state system is presented in Section 4. The statistical
mechanical formulation is outlined in the Appendix. The
limitations of the deformable body model and the necessity of
including submolecular partitioning and shape non-convexity
into the description are discussed in Section 5. In Section 6 we
present results of Monte Carlo simulations on spherical fan
molecules that form layered fluid phases, thus demonstrating
that non-convexity of the shape could give rise to mesomorphic
behaviour even in the absence of overall shape anisometry and
submolecular partitioning. The conclusions are drawn in
Section 7.

2. The deformable convex body approximation

Even if one ignores all but the steric interactions of highly
flexible supermesogens, such as those of Fig. 1, one would still
have to describe the shape of each conformation. A detailed
description is in general rather difficult, involving a large
number of geometrically complex objects. Many of these
difficulties can of course be avoided at the expense of some

crudeness in the representation of molecular shapes. Thus, as a
first step towards a description of their steric interactions, one
could imagine that each of the supermolecules is ‘‘wrapped’’
with some impenetrable but easily stretchable wrapping and
treat them as impenetrable objects whose outer surface is
defined by the wrapping. For brevity, these objects will be
referred to as the ‘‘envelopes’’ of the supermolecular con-
formations. The wrapping is understood as the enclosure of the
molecule within a convex volume of the smallest possible
surface area. In this picture, conformational changes are
perceived as deformations of the envelope, which is therefore
considered to be an impenetrable but deformable convex body.
Convexity of the volume means that the linear segments

connecting any two points on its outer surface are entirely
contained with the volume. It is invoked in the present con-
text primarily in order to provide a well defined meaning for
the concept of ‘‘wrapping’’. Convex objects are also more
convenient to handle mathematically13 when evaluating their
excluded volume. In more physical terms, convexity indicates
the absence, or neglect, of interdigitations and/or entangle-
ments among the supermolecules. In that sense, non-convex
structures made by fusion of a small number of convex shapes
(e.g. united-atom spheres) in a way that does not give rise to
extensive molecular interdigitation could be adequately
approximated by their convex envelopes.
For the statistical description of the supermolecular systems

in the deformable convex body approximation,14 each mole-
cular envelope, or state s of the non-interacting deformable
body, is assumed to have a certain intrinsic probability Ps

0. The
latter can be determined from the intramolecular interactions,
through the conformational energy Es and from the number Ns

(multiplicity) of distinct conformations that are described by
the same envelope s (see eqn. (A1)). It should be noted here
that, contrary to what is often assumed, the lowest energy state
does not necessarily come with the largest intrinsic probability;
a state of higher energy could be intrinsically more probable if
its multiplicity Ns is sufficiently large. In the bulk phase, the
state is obtained with a different probability, Ps, to be referred
to as the bulk probability, which can be regarded as a
modulation of the intrinsic probability Ps

0 by the intermole-
cular interactions (see eqn. (A6)). The two probabilities, Ps

0

and Ps, could differ dramatically in cases where, for example, a
state with large intrinsic probability packs very inefficiently in
the bulk phase.

3. A simplified two-state example

To illustrate the deformable convex body description we
consider a supermolecular structure of radial topology

Fig. 1 Chemical structure (a) and space filling model of different conformations (b), (c), of a representative8 globular dendritic supermesogen.
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consisting of an inner flexible dendritic scaffold and periph-
erally appended rod-like mesogenic units with flexible end-
chains as in Fig. 2(a). Supermesogens of this structure are
known to form layered mesophases for several generations of
the dendritic scaffold.8 Replacement of the single end chains
of the mesogens with twin chains was found to favour the
formation of columnar mesophases.9

Extended conformations such as the one shown in Fig. 2(a)
would be very unlikely in any condensed fluid phase because of
their large effective molecular volume. The exclusion of such
conformations, however, still leaves a large number of more
compact conformations in which the interacting supermolecule
can be found. In extreme simplification, we assume that all the
relevant conformations can be enclosed in just two envelopes,
a sphere and a cylinder. Given the geometrical shapes of the
two envelopes we estimate their volumes and their intrinsic
probabilities. To this end we consider the accommodation of
the supermolecule within a spherical envelope as shown in
Fig. 2(b). The dendritic scaffold is contained within an inner
sphere of diameter DI and the cores ‘‘grow’’ radially from the
surface of the inner sphere with average surface density 1/s.
Ignoring the volume occupied by the end chains, the radius of
the spherical envelope is Dsph ~ DIz2LR, where LR is the
length of the mesogenic rod units. The accommodation of the
same supermolecule in a cylindrical envelope is shown in
Fig. 2(c). The mesogenic units are grouped in two cylindrical
bundles and the dendritic scaffold is contained in the
cylindrical volume between the two bundles. To compare
quantitatively the total volumes of the two envelopes we
assume that the surface density of the rods in the cylindrical
bundles is also equal to 1/s and that the dendritic scaffold
occupies equal volumes in both types of envelopes. It then
follows that the ratio of volumes of the two envelopes is given
by eqn. (1).

Vcyl=Vsph~(1z3v)=(1zv)3 ð1Þ

with

v:
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(8p=

ffiffiffi
3

p
)

q
(LR=DR)=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
NRs=scp

q

Here DR is the diameter of the rod-like mesogenic units, NR is
their total number in a single supermolecule, s is the average
area per mesogenic unit and scp is the area per mesogenic unit
under conditions of hexagonal close packing.
Representative plots of the volume ratio in eqn. (1) as a

function of the reduced grafting area s/scp, for different NR

corresponding to different generations of the dendritic scaffold,
are shown in Fig. 3. It is apparent that the volume of the
cylindrical envelope is substantially smaller than that of the
spherical one in all cases of physical relevance. This result is
simply the quantification of what can be seen qualitatively on

comparing Figs 2(b) and (c), i.e. that the internal packing of the
rod-like mesogenic units within the spherical envelope is not as
efficient as in the cylindrical one. In turn, this implies that the
cylindrical state is favoured by the gain in packing entropy, not
only in the ordered phases but also in the isotropic. To estimate
the relative probabilities for the two envelopes we assume
that the number of configurations accessible to the scaffold is
determined by the volume available to it, irrespectively of the
shape (spherical or cylindrical) of that volume. It then follows
that the multiplicity of the cylindrical envelope is essentially
NR/2 times that of the spherical one since there are that many
ways to deform the configuration of Fig. 2(b) along two
diametrically opposite rods in order to produce the configura-
tion of Fig. 2(c).
The volume ratio in the plots Fig. 3(a) assumes its smallest

value at close packing. Practically, however, this corresponds
to thermodynamically inaccessible conditions as the close
packed states, spherical or cylindrical, are normally associated
with low intrinsic probabilities. This is so because such states,
aside from their energies, which could be rather high, have
low multiplicities compared to respective envelopes of larger
volume, where a much larger number of configurations of the
rods and of the dendritic scaffold could be accommodated. The

Fig. 2 (a) Extended configuration of a dendritic supermesogen with flexible scaffold and rod-like mesogenic units attached longitudinally in the
outer periphery of the scaffold. (b) Average configuration of the supermesogen within a spherical envelope. (c) The same within a cylindrical
envelope.

Fig. 3 (a) Plots of the ratio Vcyl/Vsph of the molecular volumes in
eqn. (1) associated with the spherical and the cylindrical envelopes of
Figs 2(b) and (c) as a function of the reduced area s/scp per rod-like
mesogenic unit for different numbers NR of such units, corresponding
to different generations of the dendritic scaffold. (b) Plots of the aspect
ratio Lcyl/Dcyl of the cylindrical envelope. The plotted results are
obtained for rod-like mesogenic cores of aspect ratio LR/DR ~ 4.
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physically relevant value of the area per rod, s/scp, can be
estimated by noting that the optimisation of the internal
entropy of the supermolecules versus their packing entropy in
the bulk requires that the density of mesogenic units within the
envelope be nearly equal to their average density in the bulk
phase. In other words, the supermolecules in, say, the layered
phase are packed with uniform rod density as shown in
Fig. 4(a) rather than as shown in Fig. 4(b) where the rods are
densely packed within the envelopes leaving more free volume
between envelopes. Accordingly, representative values of the
reduced area are in the vicinity of s/scp # 2.
Fig. 3(b) shows the calculated aspect ratio Lcyl/Dcyl of the

cylindrical envelope as a function of the reduced rod area. As
expected, it decreases with increasing rod area and with
generation number of the dendritic scaffold. In fact, the aspect
ratio for the high generation cases turns out to be too low (v3)
to produce orientational ordering by anisometry of the overall
shape. We shall return to this point in Section 5.

4. Structural and conformational phase transitions

Having established that the cylindrical envelope is in general of
lower volume and possibly of higher multiplicity than the
spherical one, we now consider the transitions among fluid
phases for a system that can exist in these two types of
interconverting molecular envelopes with specified intrinsic
probabilities. The free energy is formulated according to the
density functional approach for a system of interconverting14

spherical and spherocylindrical states of the molecular
envelope interacting via hard-body forces. The fluid phases
considered are the isotropic, the nematic and the smectic
A phase. The procedure is outlined in the appendix. The
spherocylindrical shape (a cylinder with two hemispherical
caps in its ends) is chosen to represent the shape of the
cylindrical envelope in these calculations mainly in order to
avoid certain mathematical complications associated with the
excluded volume of simple cylinders.
The results of calculated phase transitions as a function of

the intrinsic probability of the cylindrical envelope are shown
in Figs. 5(a)–(c) for a system where the (sphero)cylinder aspect
ratio is set at Lcyl/Dcyl ~ 4 and the molecular volume ratio of
the two envelopes is Vcyl/Vsph ~ 0.5. As shown in Fig. 5(a), an
isotropic and a smectic A phase are always present. At high
intrinsic probabilities of the cylinder, a nematic phase appears
between the isotropic and the smectic. Fig. 5(b) shows that the
bulk probability of the cylindrical envelope in the ordered
phases is nearly equal to unity, independently of its intrinsic
probability. This is in accordance with the packing efficiency
considerations discussed earlier. The discontinuous increase
of the bulk probability across the phase transition is large,

particularly at low intrinsic probabilities. Interestingly, near the
phase transition the bulk probability of the cylindrical envelope
is found to be higher than its intrinsic probability, even in the
isotropic phase. The layer spacing is determined exclusively
from the size of the rod like conformation.
The results obtained in this section obviously involve too

many simplifications to be quantitatively realistic. Never-
theless, these results could be quite relevant to real systems in
the sense that they clearly demonstrate the selection and
statistical enhancement of the supermolecular conformations
according to their packing properties in the ordered phase. It
might be useful at this point to stress that supermolecules of the
type considered here cannot be strictly impenetrable and
deformable: as the dendritic generations grows, conditions of
peripheral steric congestion (packing catastrophe) could be
reached. In that case the dendrimers would become impene-
trable but also highly unlikely to deform due to lack of space.
For generations below the congestion limit, the dendrimers are
quite deformable but only some of their relatively compact

Fig. 4 (a) Optimal packing in the ordered, layered, phase. The density
of the mesogenic cores within the cylindrical envelopes does not differ
from the average density in the phase. (b) High packing density within
the envelopes, resulting in increased translational and rotational
freedom of the individual envelopes within the phase, albeit at the
expense of the internal freedom of the mesogenic cores within each
envelope.

Fig. 5 Results of density functional calculations for the phase diagrams
of the system of interconverting cylindrical–spherical envelope states
as a function of the intrinsic probability of the cylindrical state.
The cylinder aspect ratio is Lcyl/Dcyl ~ 4 and the cylinder to sphere
molecular volume ratio is Vcyl/Vsph ~ 0.5. The fluid phases in these
calculations are isotropic (I), nematic (N) and smectic A (SmA). (a)
Phase coexistence densities (in arbitrary units). (b) Probability of the
rod like deformation at the phase transition. (c) Transition pressure (in
arbitrary units).

J. Mater. Chem., 2001, 11, 2832–2838 2835



conformations can be considered as reasonably impenetrable
whereas the more extended conformations can produce many
highly interdigitating configurations. The applicability of both
impenetrability and deformability to the interacting objects
rests in this case on the assumption that the bulk probabilities
of such extended conformations are negligible. But even so, the
approximate validity of impenetrability does not of course
imply that the relatively compact conformations are adequately
represented by convex objects. In fact, as discussed in the next
two sections, a description based on shape could accommodate
a certain extent of peripheral interdigitation of the interacting
supermolecules by relaxing the convexity restriction.

5. Direct segmental interactions and
microsegregation

The impenetrable deformable convex body model provides an
interpretation of self organisation and conformational phase
transitions in terms of the interplay between extensive flexibility
and packing entropy. Its applicability is of course restricted to
supermolecular structures that can be reasonably approxi-
mated by the shapes of their envelopes. The model, however,
does not constitute a complete description of real dendritic
supermolecular systems, not even on the qualitative level. It
fails, for example, to explain why dendromesogens of the
structure shown in Fig. (2) do produce smectic phases for high
generation8 in spite of the fact that the aspect ratio of the
cylindrical envelope decreases with increasing generation (see
Fig. 3(b)) and eventually goes below the value required for the
formation of a smectic phase of cylindrical objects. The failure
is partly due to not accounting for submolecular partitioning
that can give rise to strongly microsegregated ordering. Such
partitioning is obviously present in the cylindrical states of
Fig. 2(c), which show two clearly separated core regions, two
end chain regions and a central region containing the scaffold
part. This kind of microsegregation is thought to be the
primary driving mechanism for the formation of the layered
phases of poly(amidoamine) dendrimer derivatives8,9 of the
general structure shown in Fig. 2. Another reason for the
failure is the underestimation of the anisotropic interactions
of the supermolecular structures as a result ignoring direct
interactions of individual mesogenic units belonging to
different supermolecules.
Indeed, cylindrical envelopes with densely packed contents

and high aspect ratio, such as the ones shown in Fig. 4(b),
could be sufficiently directional objects to produce an ordered
phase. Their aspect ratio, however, decreases with increasing
generation number and, furthermore, such states of dense
internal packing are intrinsically far less probable than states of
lower internal packing densities, such as shown in Fig. 4(a).
The latter states are clearly of smaller aspect ratio and
eventually not sufficiently directional by virtue of their
shape, but the mesogenic units contained in them have more
freedom to interact individually with the mesogenic units of
neighbouring supermolecules. Such interactions are further
facilitated in the presence of microsegregation and promote the
mutual alignment of the mesogenic units. However, it is the
aspect ratio of the mesogenic units that is relevant to these
interactions and not the aspect ratio of the overall cylindrical
envelope.
The explicit consideration of direct interactions among the

supermolecular constituents is, in general, hard to accom-
modate within the conceptual framework of the deformable
body model. Nevertheless, in many cases of interest where the
relevant conformations are more or less compact and preclude
extensive entanglements, the intermolecular interactions
involve only the constituents that are near the surface of the
supermolecule. In such cases the deformable body model can
be extended to account for direct interactions among

constituents by relaxing the hard convex body restriction.
This can be accomplished, for example, by using soft potentials
to describe the interaction among the deformable states of the
envelopes and/or by allowing for non-convexity of their shapes,
thus accounting for the steric interactions that are generated by
the interdigitation the superficial constituents in neighbouring
supermolecules. As shown in the next section, non-convexity of
the shape could give rise to directional interdigitations of the
molecules, sufficiently strong to produce both orientational
ordering and layering. It should be noted here that the layered
configurations of the supermolecules, such as the one shown in
Fig. 4(a), exhibit two kinds of interdigitation. One kind takes
place across the layer interface and involves the flexible end
chains. The effect of these interdigitations on the super-
molecular alignment is marginal and will not be considered
further. The other kind of interdigitation takes place laterally,
within the layers, and involves the mesogenic units in side-by-
side neighbouring supermolecules. These interdigitations
obviously have a direct effect on the long-range supermolecular
alignment.
Finally, by relaxing the hard body restriction it becomes

readily possible to introduce submolecular partitioning into the
model, simply by assigning different interactions to different
parts of the deformable envelopes, in correspondence with the
structure of the respective conformations. The elongated states
exhibiting submolecular partitioning generally promote the
formation of layered phases. As demonstrated in ref. 12 the
lateral attachment of the mesogenic units to the scaffold
(as opposed to the longitudinal attachment of the systems in
Fig. 2) has the effect of stabilizing the nematic ordering. In the
present context this can be interpreted as the removal of the
submolecular partitioning from the conformational structure
through the lateral substitution, while still maintaining the
other factors, global shape anisometry and shape non-
convexity, that promote orientational ordering.

6. Highly interdigitating non-convex shapes:
spherical fans

In this section we consider the contribution of shape non-
convexity to the anisotropy of the effective intermolecular
interaction, in isolation from any contributions of overall
shape anisometry or submolecular partitioning, by studying the
ordering of rigid fan-like structures15 of the spherical envelope.
An idealised, and computationally convenient, representation
of a spherical fan molecule is shown in Fig. 6. It consists of a
number of thin discs symmetrically fused along a common
diameter, to be identified with the z molecular axis in what
follows. The molecular envelope of these structures is obviously
a sphere of diameter equal to the disc diameter. It is apparent
that the closest distance of approach of two such objects is

Fig. 6 Diagram of a spherical fan molecule consisting of three
symmetrically fused thin discs.
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achieved when their z axes are side-by-side parallel. Assuming
therefore that the spherical fan molecules interact only via hard
body interactions, they would be expected to form layered
phases with orientational ordering of the z-axes. This kind of
phase organization should appear at densities near or above the
density that corresponds to the close packing of the spherical
envelope. Such behaviour is indeed observed in isobaric-
isothermal (NPT) Monte Carlo (MC) simulations, the details
of which can be found in ref. 16.
At low pressures an isotropic fluid phase is stable. On

increasing the pressure, a layered fluid phase appears with
uniaxial ordering of the fan z-axes along the layer normal. The
uniaxial layered phase (see Fig. 7) has the same symmetries
with the usual smectic A phase of common calamitic mesogens.
An additional, unique, feature of this phase, that distinguishes
it from the usual smectic A, is the very strong correlation of the
rotations of neighbouring molecules about their z-axes.
The pressure at the transition to the ordered phase depends

strongly on the number of blades (twice the number of fused
discs) in the fan molecule. Pressure–density phase diagrams
obtained from the MC simulation for different numbers of
blades are shown in Fig. 8. As the number of blades increases,
the pressure of the transition to the layered phase is elevated
and the pressure–density relation tends to that of hard spheres
corresponding to the envelopes of the fans. As seen in Fig. 8,
fans made of 10 discs behave practically as their hard sphere
envelopes. On the other extreme, fans with a small number of
thin blades (four or less) do not show fluid ordering tendencies
in the simulations since they can interdigitate substantially for
any relative orientation.

7. Conclusions

We have presented a low-resolution molecular theory in which
the microscopic properties giving rise to the directionality of
the supermolecular interactions are identified with overall
shape anisometry, submolecular partitioning of the interac-
tions and non-convexity of the molecular surface. The theory
can provide a consistent description of the basic features of the
mesomorphic behaviour of supermolecular systems. Since the

primary interacting objects are the supermolecules, and not
their submolecular constituents, the theory is not applicable to
systems exhibiting extensive intermolecular entanglements.
We have studied a simple model of convex deformable hard

body supermolecules that can interconvert between spherical
and cylindrical states. The model exhibits an isotropic, a nema-
tic and smectic A phase and strong thermodynamic selection of
the conformations according to their packing efficiency in each
of the phases. The ordered fluid phases in this model are stabi-
lised solely by the anisometry of the enveloping shape of the
dominant supermolecular conformations. It is argued, how-
ever, that phase microsegregation and intermolecular surface
interactions could give rise to ordering even in the absence of
substantial shape anisometry of the dominant conformations.
Monte Carlo simulation of rigid spherical fan molecules

produce layered, uniaxially ordered fluid phases. The self
organisation in these systems is driven by the high non-
convexity of the molecular shapes which strongly couples the
distance of intermolecular approach to the relative molecular
orientation.
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Appendix

Here we outline a density-functional formulation of the free
energy for the fluid phases of deformable molecules with
predetermined interconverting shapes. Further details can be
found in ref. 14.
The conformations of the molecule are grouped according to

their shape into a number of distinct ‘‘envelope’’ state s. The
intrinsic probability Ps

0 for the isolated molecule to be found in
the state s is defined by:

P0
s~

Nse
{bEsP

s0
e{bE

s0

where Es is the intra-molecular energy of the state s and Ns is
the multiplicity of that state, i.e. the number of distinct ways
(conformations) in which it can be obtained. Consider N
deformable molecules in a volume V and at temperature T and

Fig. 7 Snapshots of a system of six-bladed (three-disc) spherical fans
(a) in the isotropic phase and (b) in the layered uniaxially ordered fluid
phase.

Fig. 8 Phase diagrams of pressure vs. packing fraction calculated from
Monte Carlo simulations of fan molecules with different numbers of
blades. The fans are made of fused discs as in Fig. 6. & 3-disc fans,
r 6-disc fans, 10-disc fans in expansion (#) and in compression ($)
sequences. Hard spheres (of equal diameter with the discs) in expansion
(() and in compression (,) sequences. The line connecting the two
sequences corresponds to the melting transition of the hard sphere
system.

(A1)
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denote by u(r1,2,v1,2,s1,s2) the intermolecular potential for a
pair of molecules in states s1 and s2, with relative position r1,2
and orientation v1,2. In order to derive an approximation
for the NVT free energy of the system in terms of the
intermolecular potential we use the variational cluster expan-
sion method. The resulting form of the free energy is a
generalization of the Onsager free energy and is appropriate
for describing order–disorder transitions, including isotropic,
nematic and smectic A phase symmetries, in fluids consisting
of deformable molecules:

bF~ lnr{ ln f{
r�
2

X
s1,s2

e{b(Es1
zEs2

)

ð
dv1dv2dZ1dZ2qs1,s2 (v1,2,Z1,2)fs1 (v1,Z1)fs2 (v2,Z2)

Here, qs1,s2(v1,2,Z1,2) is the orientational–positional integral of
the Meyer function of the intermolecular potential:

qs1,s2 (v1,2,Z1,2)~
Ð
dX1,2dY1,2 1{ exp½{bu(1r1,2,v1,2; s1,s2)�ð Þ

and fs(v,Z) is the orientational–positional distribution func-
tion for the state s. This distribution is obtained from the self-
consistency relation:

fs1 (v1,z1)~

exp½{r�
P
s2

P0
s2

Ð
dv2dz2qs1 ,s2 (v1,2,z1,2)fs2 (v2,z2)�

f

where

f~
P
s

P0
s fs

and

fs1~
Ð
dv1 exp½{r �

P
s2

P0
s2

Ð
dv2dZ2qs1,s2 (v1,2,Z1,2)fs2 (v2,Z2)�

and r* is renormalized effective density that tends to the actual
particle density r when the latter is small.
For given thermodynamic variables (r,T), eqn. (A4) has, in

principle, several solutions which correspond to phases of
different symmetry. The solution associated with lower free
energy is the thermodynamically stable one. The phase
boundaries are calculated by solving the coexistence conditions
obtained from equating the pressures and the chemical
potentials of the coexisting phases.
The probability for a molecule in the bulk phase to be found

in state s is given by:

Ps~Nse
{bEsfs=

X
s0

e{bEs0 fs0~P0
s

fs
f

If the envelope states are uniaxial objects, i.e. if they posses
at least one axis of full rotational symmetry, then the order-
ing and other structural information of the phases can be
fully described in terms of the following ensemble
averages:v((3cos2 h2 1)/2w, representing the principal
order parameter of the orientations h of the molecular
symmetry axes relative to the symmetry axis of the ordered
phase, nematic or smectic A, vcos (2pZ/d)w, describing the
strength of the positional modulation (layering of thickness d)
of the molecular density along the layer normal in the smectic
A phase and vcos (2pz/d)(3cos 2h2 1)/2w, giving a measure
of the strength of the coupling between orientational ordering
and layering in the smectic A phase.
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